6.2. Намагничивание объекта контроля

6.2. Намагничивание объекта контроля

6.2.1. Используют три вида намагничивания: продольное (полюсное); циркулярное; комбинированное. Способы и схемы намагничивания при проведении магнитопорошкового контроля приведены на рис. 1.

                      ┌────────────────────┐
                      │   Намагничивание   │
                      └─────────┬──────────┘
         ┌──────────────────────┼──────────────────────┐
┌────────┴────────┐  ┌──────────┴──────────┐  ┌────────┴─────────┐
│   Циркулярное   │  │Продольное (полюсное)│  │ Комбинированное  │
└─────────────────┘  └─────────────────────┘  └──────────────────┘

           Схемы намагничивания (рисунки не приводятся)

┌─────────────────┐  ┌─────────────────────┐  ┌──────────────────┐
│Пропусканием тока│  │┌───────────────────┐│  │┌────────────────┐│
│                 │  ││В соленоиде        ││  ││Пропусканием    ││
│┌───────────────┐│  │└───────────────────┘│  ││тока по детали и││
││по детали      ││  │┌───────────────────┐│  ││с применением   ││
│└───────────────┘│  ││В катушке          ││  ││электромагнита  ││
│┌───────────────┐│  │└───────────────────┘│  ││                ││
││по центральному││  │┌───────────────────┐│  │└────────────────┘│
││проводнику     ││  ││В переносном       ││  │┌────────────────┐│
│└───────────────┘│  ││электромагните     ││  ││Пропусканием    ││
│┌───────────────┐│  │└───────────────────┘│  ││тока по детали и││
││по тороидной   ││  │┌───────────────────┐│  ││с применением   ││
││обмотке        ││  ││В стационарном     ││  ││соленоида       ││
│└───────────────┘│  ││электромагните     ││  ││                ││
│┌───────────────┐│  │└───────────────────┘│  │└────────────────┘│
││по участку     ││  │┌───────────────────┐│  │┌────────────────┐│
││детали         ││  ││Постоянным магнитом││  ││Пропусканием    ││
│└───────────────┘│  │└───────────────────┘│  ││по детали и     ││
│┌───────────────┐│  │┌───────────────────┐│  ││соленоиду токов,││
││Возбуждением   ││  ││Перемещением полюса││  ││сдвинутых по    ││
││тока в детали  ││  ││магнита по детали  ││  ││фазе на 90°     ││
│└───────────────┘│  │└───────────────────┘│  │└────────────────┘│
└─────────────────┘  └─────────────────────┘  └──────────────────┘

Рис. 1. Виды, способы и схемы намагничивания
объектов контроля

Примечания:

1. При комбинированном намагничивании намагничивающий ток для циркулярного и полюсного намагничивания определяют по приведенным в настоящих Методических рекомендациях формулам.

2. Допускается устанавливать режим намагничивания экспериментально на образце с дефектами, представляющим собой объект контроля или его часть.

6.2.2. Продольное (полюсное) намагничивание осуществляют с помощью соленоидов, электромагнитов или устройств на постоянных магнитах.

При продольном намагничивании преимущественно обнаруживаются дефекты поперечной ориентации. Выявление продольных дефектов не гарантируется.

6.2.3. Циркулярное намагничивание осуществляют путем пропускания тока по контролируемому объекту или по центральному проводнику (стержню, кабелю), проходящему через сквозное отверстие в объекте. Рекомендуется размещать стержень по оси этого отверстия. Допускается проводить намагничивание одновременно нескольких деталей, надетых на стержень.

При циркулярном намагничивании преимущественно обнаруживаются дефекты продольной ориентации и радиально направленные дефекты на торцевых поверхностях объектов. Выявление поперечных дефектов не гарантируется.

6.2.4. При необходимости выявления дефектов различного направления объекты контролируют, намагничивая в двух или более направлениях, а также применяют комбинированное намагничивание.

6.2.5. Циркулярное намагничивание при контроле внутренних поверхностей объектов проводят путем пропускания тока по вставленному в отверстие стержню, покрытому изоляционным материалом.

Продольное намагничивание таких объектов выполняют с применением соленоида, вставляемого во внутреннюю полость объектов.

6.2.6. При последовательном намагничивании объекта продольным, а затем циркулярным полем промежуточное размагничивание не проводят, если остаточная намагниченность не оказывает влияние на последующие операции контроля.

6.2.7. Намагничивание объектов проводят полем постоянного, выпрямленного, переменного или импульсного тока. При намагничивании переменным или импульсным полем намагничивается только поверхностный слой объекта контроля, что позволяет выявить только поверхностные дефекты. При намагничивании постоянным током намагничивается поверхностный и подповерхностный слои, что позволяет выявлять как поверхностные, так и подповерхностные дефекты (на глубине до 2 мм).

6.2.8. При магнитопорошковом контроле применяют два способа контроля: способ остаточной намагниченности (СОН) и способ приложенного поля (СПП).

6.2.9. Способ остаточной намагниченности применяют, если коэрцитивная сила материала объекта составляет более 9,5 А/см (12 Э).

6.2.10. При необходимости улучшения выявляемости дефектов способом остаточной намагниченности при намагничивании с применением соленоида рекомендуется использовать источник питания, обеспечивающий при выключении уменьшение намагничивающего тока от максимального значения до нуля за время не более 5 мс.

6.2.11. При контроле СОН режим намагничивания объектов (значение намагничивающего тока или напряженность магнитного поля) выбирают так, чтобы напряженность поля соответствовала техническому магнитному насыщению материала. В обоснованных случаях допускается применять поле меньшей напряженности. Магнитные свойства некоторых сталей приведены в Приложении N 10.

6.2.12. При контроле с применением СОН ток циркулярного намагничивания рассчитывают по максимальному диаметру контролируемого объекта или по максимально удаленным зонам от оси контролируемого объекта.

6.2.13. При применении СПП для объектов, у которых различные участки резко отличаются друг от друга по сечению, контроль следует проводить в два или более приемов, подбирая в каждом случае ток циркулярного намагничивания соответственно размеру (диаметру) объекта в контролируемых зонах.

6.2.14. Для уменьшения вероятности прижогов и локального нагрева намагничивающих устройств и мест ввода тока в проверяемые объекты при контроле СПП рекомендуется применять прерывистый режим намагничивания, при котором ток по проводникам намагничивающего устройства пропускают в течение (0,1 - 3,0) секунд с перерывами до 5 секунд.

6.2.15. При комбинированном намагничивании обеспечивается возможность одновременного обнаружения различно ориентированных дефектов.

6.2.16. Комбинированное намагничивание осуществляют путем наложения на объект контроля двух или более различно направленных магнитных полей.

При комбинированном намагничивании используют:

- переменные синусоидальные, выпрямленные одно- или двухполупериодные магнитные поля, постоянное магнитное поле в сочетании с каким-либо переменным;

- продольное намагничивание с помощью соленоидов или электромагнитов постоянного тока в сочетании с циркулярным намагничиванием переменным током;

- однополупериодные выпрямленные магнитные поля, сдвинутые по фазе на 120 градусов.

6.2.17. При невозможности одновременного намагничивания всего объекта (например, при контроле объектов больших размеров или сложной формы) намагничивание с последующим выполнением других операций контроля следует проводить по отдельным участкам. Для этого, как правило, используют выносные намагничивающие средства: выносные электроконтакты, приставные электромагниты, устройства на постоянных магнитах, витки гибкого кабеля, накладываемые на намагничиваемые участки объекта, разъемные соленоиды и другие средства.

    6.2.18.   При   контроле   СПП  значения  тангенциальной  H  и
                                                               t
нормальной  Н  составляющих  вектора напряженности магнитного поля
             n
на  контролируемой  поверхности   должны  удовлетворять   условию:
H  / H  <= 3.
 n    t

6.2.19. При контроле объектов с большим размагничивающим фактором, имеющих отношение длины к корню квадратному из площади поперечного сечения (или максимальному размеру поперечного сечения) менее 5, при полюсном намагничивании в разомкнутой цепи составляют объекты контроля в цепочки, размещая торцевыми поверхностями друг к другу, либо применяют удлинительные наконечники, либо используют переменный намагничивающий ток с частотой 50 Гц и более или импульсный ток.

Площадь соприкосновения деталей, составленных в цепочки, должна быть не менее 1/3 площади их торцевых поверхностей.

6.2.20. Значение тока при циркулярном намагничивании определяют в зависимости от требуемого значения тангенциальной составляющей напряженности магнитного поля на контролируемой поверхности, формы и размеров сечения объектов контроля по формулам, приведенным в п. 6.2.22 и в Приложении N 11.

6.2.21. Значение намагничивающего тока допускается определять и проверять экспериментально следующими способами:

- по выявлению естественных дефектов на контрольных образцах, которые представляют собой проверяемые объекты (или их участки) с трещинами минимального раскрытия в проверяемых зонах;

- по выявлению искусственных дефектов на контрольных образцах, представляющих собой проверяемые объекты с дефектами;

- по установлению заданного значения тангенциальной составляющей магнитного поля на проверяемых объектах в зонах контроля, определяемой с применением приборов измерения напряженности магнитного поля.

Применение контрольных образцов в виде пластин, стержней, дисков и т.п., в том числе образцов с трещинами минимальных размеров, для определения режимов намагничивания объектов контроля другой формы и размеров не допускается.

6.2.22. Расчетное значение тока I в амперах для циркулярного намагничивания деталей относительно простого сечения определяют по формулам:

- для объектов в виде круга диаметром D (мм): I = 3 H D. Здесь Н - заданная напряженность магнитного поля, А/см. Для объектов, сечение которых в зоне контроля отличается от круга, за диаметр D принимают наибольший размер поперечного сечения. При сложной форме сечения объекта в качестве D принимают эквивалентный диаметр, который рассчитывают по соотношениям:

D = P / пи ~ 0,3 Р, где Р - периметр сечения объекта в зоне контроля, мм,

или

          _
    D ~ \/S, где S - площадь поперечного сечения в той же зоне, кв. мм;

- для бруска прямоугольного сечения шириной b и толщиной h, мм:

при b / h >= 10: I = 0,2 H b;
при b / h < 10: I = 0,2 Н (b + h),

где H - заданная напряженность магнитного поля, А/см.

Расчет тока для деталей, имеющих форму, близкую к одной из вышеуказанных, проводится по тем же формулам.

6.2.23. Для деталей сложной формы силу тока циркулярного намагничивания на первом этапе определяют по тем же формулам, а затем уточняют экспериментально или путем установки тока, который обеспечивает заданную напряженность поля.

6.2.24. Минимальное и максимальное значения напряженности приложенного магнитного поля (А/см) определяют по формулам:

минимальное значение:

Н мин. = 15 + 1,1 Нс;

максимальное:

Н макс. = 40 + 1,5 Нс,

где Нс - коэрцитивная сила материала объекта контроля, А/см.