2. Полная валидация биоаналитической методики
8. Любая биоаналитическая методика, независимо от того, новая она или известная, подлежит полной валидации.
Основной целью валидации биоаналитической методики является подтверждение ее надежности для определения концентрации анализируемого вещества в таких биологических образцах, как кровь, сыворотка, плазма, моча и слюна. Более того, если при пробоподготовке использовался антикоагулянт, его же необходимо использовать для валидации. Полная валидация, как правило, проводится для каждого вида животных и каждой разновидности биологических жидкостей, использованных в исследовании.
Если при проведении валидации биоаналитической методики затруднительно использовать ту же разновидность биологической жидкости, которая использовалась в рамках исследования, то при достаточном обосновании допустимо использовать альтернативные биологические образцы (например, модельную спинномозговую жидкость).
9. Основными характеристиками биоаналитической методики, необходимыми для подтверждения ее приемлемости и надежности аналитических результатов, являются селективность, нижний предел количественного определения, функция отклика и аналитический диапазон (воспроизводимость параметров градуировочной кривой), правильность, прецизионность, влияние матрицы (эффекты матрицы (полнота элюирования)), стабильность анализируемых веществ в биологических образцах и стабильность анализируемого вещества (веществ) и ВС при хранении, в рабочих растворах, в извлечениях в течение всего периода хранения и пробоподготовки.
10. Изучению, как правило, подлежит одно анализируемое вещество или действующее вещество, но в некоторых случаях определяют концентрацию нескольких анализируемых веществ. Это могут быть как два разных вещества, так и исходное соединение с его метаболитами или энантиомеры (изомеры) действующего вещества. В таких случаях принципы валидации и анализа справедливы для всех исследуемых анализируемых веществ.
Селективность (избирательность)
11. Биоаналитическая методика должна обладать способностью дифференцировать анализируемое вещество и ВС от эндогенных компонентов матрицы и других компонентов образца. Селективность биоаналитической методики необходимо подтвердить, используя не менее 6 различных источников соответствующих холостых образцов, не содержащих анализируемого вещества (с экспериментальным подтверждением). В отношении редких разновидностей биологических образцов допустимо использовать меньшее количество источников. Отсутствие искажающего влияния компонентов холостого биологического образца, констатируется, как правило, если их сигнал по нижнему пределу количественного определения не превышает 20% для анализируемого вещества и 5% - для ВС.
В некоторых случаях может понадобиться исследование степени влияния метаболитов действующего вещества, а также продуктов деградации, образующихся при пробоподготовке, и одновременно применяемых лекарственных препаратов. На этапе валидации биоаналитической методики или на этапе анализа конкретного исследования и анализируемого вещества необходимо принять во внимание лекарственные препараты, применявшиеся исследуемой популяцией как сопутствующие.
12. Если применимо (для нестабильных метаболитов, например, кислых метаболитов в эфире, нестабильных N-оксидов или глюкуронидов, соединений с лактонной структурой), необходимо оценить возможность обратного преобразования метаболита в исходное анализируемое вещество на различных этапах анализа (включая процедуры пробоподготовки или в извлечении для МС-анализа). Необходимо установить степень обратного преобразования и проанализировать его влияние на результаты исследования. На ранних этапах разработки нового химического соединения, пока его метаболизм еще не изучен, такую оценку осуществить невозможно. Тем не менее после получения в процессе разработки новых данных о метаболизме действующего вещества необходимо учитывать проблему обратного преобразования, что требует проведения частичной валидации.
В некоторых случаях достаточно сложно получить доступ к стандартным образцам исследуемых метаболитов. С другой стороны, обратное преобразование метаболита можно оценить, проводя повторный анализ активных образцов (образцов, содержащих анализируемые вещества, взятых от субъектов исследования или животных). Однако в этом случае нельзя исключить обратное преобразование в процессе пробоподготовки.
Влияние (эффект) переноса
13. При разработке методики необходимо принимать во внимание и минимизировать перенос анализируемого вещества от пробы к пробе. В процессе валидации необходимо оценить эффект переноса, вводя холостые образцы после образцов с высокой концентрацией или градуировочных растворов верхних уровней количественного определения. Перенос в холостой образец после стандартного раствора с высокой концентрацией не должен превышать 20% величины нижнего предела количественного определения (НПКО), как это указано в подразделе "Нижний предел количественного определения" настоящего раздела) и 5% - для ВС. Если очевидно, что перенос неизбежен, исследуемые образцы не рандомизируют. Для того чтобы перенос не повлиял на правильность и прецизионность, необходимо в ходе валидации предусмотреть специальные меры (например, после образцов с ожидаемой высокой концентрацией и до начала анализа очередного испытуемого образца вводить холостые образцы).
Нижний предел количественного определения
14. Нижний предел количественного определения (НПКО) есть наименьшая концентрация анализируемого вещества в образце, которая поддается надежному количественному определению с приемлемой правильностью и прецизионностью. НПКО считается наименьшим градуировочным стандартным образцом (как это указано в подразделах "Правильность" и "Прецизионность" настоящего раздела). При этом сигнал анализируемого вещества из образца с НПКО должен не менее чем в 5 раз превосходить величину сигнала холостого образца. НПКО необходимо адаптировать к ожидаемым концентрациям и цели исследования (например, в исследовании биоэквивалентности НПКО не должен быть выше, чем 5% от Cmax (минимальной величины Cmax из всей выборки субъектов)).
Градуировочная кривая (линейность)
15. Необходимо оценить функцию отклика градуировочной кривой для всех концентраций анализируемого вещества, при этом изучению подлежит определенный диапазон концентраций. Градуировочные стандартные образцы готовят путем добавления анализируемого вещества с известными концентрациями к холостой пробе с использованием той же ее разновидности, которая будет получена в исследовании. Каждому анализируемому веществу, изучаемому при валидации биоаналитической методики, и каждому аналитическому циклу должна соответствовать отдельная градуировочная кривая.
В идеале до начала проведения валидации биоаналитической методики необходимо установить ожидаемый диапазон концентраций. Этот диапазон должен перекрываться аналитической областью применяемой методики, задаваемой НПКО как наименьшего градуировочного стандарта и верхним пределом количественного определения (ВПКО) как наибольшего градуировочного стандарта. Диапазон необходимо задать с целью надлежащего описания фармакокинетики изучаемого анализируемого вещества.
16. Помимо холостого образца (подвергнутого обработке биологического образца, не содержащего анализируемого вещества или ВС) и нулевых образцов (подвергнутых обработке биологических образцов, содержащих ВС) необходимо использовать не менее 6 различных градуировочных концентраций. Каждый градуировочный стандарт допускается анализировать повторно.
17. Необходимо использовать зависимость, которая просто и надежно позволяет описать функцию отклика аналитического сигнала от концентрации анализируемого вещества. При вычислении параметров градуировочной кривой холостые и нулевые образцы не учитывают.
18. В отчете необходимо описать параметры градуировочной кривой (для линейной регрессии - угол наклона и свободный член (при необходимости последнего)). В дополнение к этому наряду с рассчитанными средними значениями правильности необходимо представить экспериментально рассчитанные концентрации градуировочных стандартов. В отчете необходимо представить все имеющиеся или приемлемые кривые (но не менее 3), полученные в ходе валидации.
19. Экспериментально рассчитанные концентрации градуировочных стандартов должны лежать в пределах
20. Несмотря на то, что градуировочную кривую желательно строить с использованием свежеприготовленных образцов, при наличии надлежащих данных по стабильности допускается использовать ранее приготовленные и подвергшиеся хранению градуировочные образцы.
Правильность
21. Правильность аналитической методики выражает близость полученных с помощью нее значений к номинальным концентрациям анализируемого вещества (как правило, она выражается в процентах). Правильность необходимо оценивать по образцам для контроля качества (КК) - образцам, к которым добавлено заранее известное количество анализируемого вещества. Образцы для КК готовят независимо от градуировочных стандартов, используя различные предварительно приготовленные исходные растворы.
22. Образцы для КК анализируют по градуировочной кривой, экспериментальные значения концентраций сравнивают с номинальными. Правильность в отчете выражают в виде процента от номинальных значений. Правильность необходимо определять по концентрациям образцов для КК, получаемым как внутри 1 цикла (правильность внутри цикла), так и в разных циклах (правильность между циклами).
С целью оценки любых временных тенденций внутри 1 цикла целесообразно подтвердить правильность и прецизионность анализа образцов для КК не менее чем в 1 цикле, соответствующем по величине планируемому аналитическому циклу для испытуемых образцов.
Правильность внутри цикла
23. Правильность внутри цикла определяют путем анализа внутри 1 цикла не менее 5 образцов одной концентрации не менее чем для 4 различных концентраций, входящих в диапазон применения методики. Рекомендуемые концентрации:
НПКО;
тройная величина НПКО (нижний уровень);
около 30 - 50% от верхней границы определяемых концентраций (средний уровень);
не менее 75% от верхней границы определяемых концентраций (верхний уровень).
Среднее значение рассчитанных концентраций должно находиться в пределах
Правильность между циклами
24. Для валидации правильности между циклами необходимо оценить НПКО, нижний, средний и верхний уровни образцов для КК из не менее чем из 3 проанализированных циклов, проведенных в течение не менее чем 2 различных дней. Среднее значение рассчитанных концентраций должно находиться в пределах
25. В отчет о валидации методики при определении правильности и прецизионности необходимо включить все полученные результаты, за исключением документированных промахов.
Прецизионность
26. Прецизионность аналитической методики - это степень близости результатов между отдельными повторными измерениями, выражающаяся в виде относительного стандартного отклонения (коэффициента вариации). Прецизионность необходимо подтвердить для НПКО, нижнего, среднего и верхнего уровней концентрации образцов для КК как внутри 1 цикла, так и между разными циклами, то есть для тех же циклов и данных, что и при подтверждении правильности.
Прецизионность внутри цикла
27. При оценке прецизионности внутри цикла необходимо использовать не менее 5 образцов одной концентрации для НПКО, нижнего, среднего и верхнего уровней концентрации образцов для КК внутри одного цикла. Относительное стандартное отклонение внутри 1 цикла не должно превышать 15% для образцов для КК, для НПКО оно не должно превышать 20%.
Прецизионность между циклами
28. При оценке прецизионности между циклами необходимо определить НПКО, нижний, средний и верхний уровни концентраций образцов для КК не менее чем из 3 проанализированных циклов, проведенных в течение не менее чем 2 различных дней. Относительное стандартное отклонение между циклами не должно превышать 15% для образцов для КК, для НПКО оно не должно превышать 20%.
Отсутствие влияния разбавления образцов
29. Степень разбавления образцов не должна влиять на параметры правильности и прецизионности методики. По возможности валидацию разбавления образцов необходимо проводить путем добавления к матрице анализируемого вещества в концентрации выше верхней границы определяемых концентраций и разведения полученного образца холостой пробой (не менее 5 определений на каждое разбавление). Правильность и прецизионность должны находиться в пределах установленных критериев приемлемости (не более
30. Оценку диапазона применения можно произвести в рамках частичной валидации. Допускается использовать иную матрицу, если показано, что она не влияет на прецизионность и правильность.
Эффект матрицы
31. При применении МС-методик необходимо оценить эффект матрицы, используя не менее 6 серий холостых образцов от разных субъектов (источников).
32. Путем вычисления отношения максимальной площади пика в присутствии матрицы (определяется путем анализа подготовленного холостого образца с добавленной известной концентрацией анализируемого вещества) к максимальной площади пика в отсутствие матрицы (чистый раствор анализируемого вещества в той же концентрации) для каждой серии матрицы для всех анализируемых веществ и ВС необходимо рассчитать эффект матрицы (ЭМ). Необходимо рассчитать нормализованный ЭМ по ВС (как частное от деления ЭМ анализируемого вещества на ЭМ ВС). Относительное стандартное отклонение нормализованного ЭМ по ВС, рассчитанное для 6 биологических образцов, не должно превышать 15%. Измерения осуществляют для нижнего и верхнего уровня концентраций образцов для КК.
При неприменимости такого подхода (например, при пробоподготовке в режиме реального времени) необходимо оценить вариабельность откликов между сериями путем анализа не менее 6 серий матрицы, в которую добавлено анализируемое вещество на нижнем и верхнем уровнях концентрации образцов для КК. В отчете о валидации необходимо представить площади пиков анализируемого вещества и ВС, а также рассчитанные концентрации каждого образца. Относительное стандартное отклонение для серии не должно превышать 15%.
33. Если матрица малодоступна, допускается использовать менее 6 различных серий матриц, однако такой подход необходимо обосновать. В этом случае также необходимо оценить эффект матрицы.
34. Если лекарственный препарат, предназначенный для парентерального введения субъектам исследования или животным, содержит вспомогательные вещества, способные вызвать эффект матрицы (например, полиэтиленгликоль или полисорбат) эффект матрицы в дополнение к холостой матрице оценивают, используя матрицу, содержащую указанные вспомогательные вещества. Если не доказано, что указанные вспомогательные вещества подвергаются метаболизму или биотрансформации in vivo, матрицу для анализа получают от субъектов исследования или животных, которым вводили эти вспомогательные вещества. Влияние вспомогательных веществ можно оценить путем вычисления ЭМ или проведения исследования посредством разведения испытуемого образца с высокой концентрацией в холостой матрице, не содержащей вспомогательные вещества.
35. В дополнение к стандартным биологическим образцам эффект матрицы рекомендуется оценивать на "нестандартных" образцах (например, образцах гиперлипидемической плазмы или плазмы, полученной из крови, подвергшейся гемолизу). Если анализу подлежат образцы от особых групп пациентов (например, с почечной или печеночной недостаточностью), эффект матрицы рекомендуется оценить, используя биологические образцы от таких пациентов.
Стабильность
36. Чтобы удостовериться, что каждый этап пробоподготовки и последующего анализа образцов, а также условия их хранения не повлияли на постоянство сохранения концентрации анализируемого вещества, проводят исследование стабильности.
37. Стабильность необходимо оценить для каждого этапа аналитической методики, то есть получить доказательства того, что условия, для которых проведены исследования стабильности (например, вид биологического образца, наличие антикоагулянта, материал контейнера (упаковки), хранение и условия анализа) аналогичны реальным условиям анализа испытуемых образцов. Ссылка на литературные источники не является достаточным условием.
38. Стабильность анализируемого вещества в исследуемом образце оценивают, используя образцы нижнего и верхнего уровня концентрации для КК, которые исследуют сразу после их пробоподготовки и после хранения в условиях, в которых проводится работа с испытуемыми образцами. Образцы для КК, как правило, анализируют по градуировочной кривой, рассчитанной по свежеприготовленным градуировочным растворам. Полученные концентрации сравнивают с номинальными. Правильность для каждой из концентраций (для средних значений) должна находиться в пределах
39. Необходимо, учитывая линейный диапазон и диапазон определения детектора, испытать стабильность исходных и рабочих растворов после соответствующих разведений.
40. Исследования стабильности необходимо проводить при различных условиях хранения (например, используя подход "наихудшего случая"), по срокам, равным или превышающим сроки хранения фактических анализируемых исследуемых образов.
41. Необходимо провести следующие испытания стабильности:
а) стабильность исходных и рабочих растворов анализируемого вещества и ВС;
б) стабильность замороженного и размороженного биологического образца, содержащего анализируемое вещество (перемещенного из условий заморозки в комнатную температуру или температуру условий пробоподготовки не менее чем в 3 циклах "замораживания - размораживания");
в) краткосрочная стабильность анализируемого вещества в биологическом образце при комнатной температуре или температуре условий пробоподготовки;
г) естественное хранение биологического образца, содержащего анализируемое вещество (в замороженном виде).
42. Кроме того, необходимо провести следующие испытания (если применимо):
а) стабильность образца после пробоподготовки при комнатной температуре или в условиях хранения, которые будут использоваться во время анализа;
б) стабильность подвергшихся пробоподготовке образцов в устройстве для автоматического ввода пробы при температуре инжектора или автодозатора.
43. Изучение стабильности при замораживании и размораживании. Образцы для КК хранят замороженными в морозильной камере при предусмотренной температуре и затем размораживают при комнатной температуре или температуре пробоподготовки. После полного размораживания образцы заново замораживают в тех же условиях. В каждом цикле образцы должны находиться в замороженном состоянии в течение по меньшей мере 12 часов. Количество циклов изучения стабильности "замораживания - размораживания" должно быть равным или превышать количество таких циклов для испытуемых образцов.
44. Изучение естественного хранения замороженного биологического образца, содержащего анализируемое вещество. Образцы для КК необходимо заморозить в тех же условиях и хранить в таких условиях столько же, сколько и испытуемые образцы, или дольше. В отношении низкомолекулярных органических соединений допускается использовать подход, основанный на исследовании крайних вариантов (метод брекетинга), например, если стабильность подтверждена при температурах минус 70 и минус 20 °C, исследовать стабильность при температурах, попадающих в этот диапазон, не требуется. Стабильность крупных молекул (например, пептидов и белков) необходимо подтвердить для каждой из температур, при которых будет осуществляться хранение биологических образцов. В дополнение к образцам для КК допускается использовать испытуемые образцы, однако использование только испытуемых образцов является недостаточным, поскольку номинальные концентрации анализируемого вещества в них неизвестны. Результаты изучения стабильности при естественных условиях хранения должны быть получены до составления отчета.
45. Изучение стабильности исходных и рабочих растворов. Подтверждать стабильность рабочих растворов для каждой концентрации не требуется, допускается ограничиться подтверждением стабильности крайних вариантов (методом брекетинга). Подтверждать стабильность внутренних стандартов, меченных стабильными изотопами, не требуется, если подтверждено, что в условиях, для которых подтверждена стабильность анализируемого вещества, не происходит реакций изотопного обмена.
46. В отношении исследования с несколькими анализируемыми веществами, включая отдельные исследования биоэквивалентности, необходимо подтвердить стабильность каждого анализируемого вещества в биологическом образце, содержащем все анализируемые вещества.
47. В целях подтверждения того, что определяемые аналитической методикой концентрации анализируемого вещества отражают его истинное содержание в биологических образцах субъекта исследования в момент их отбора, необходимо изучить стабильность анализируемого вещества в биологическом образце, полученном сразу после отбора образцов и в течение последующей пробоподготовки вплоть до помещения его в условия хранения. Необходимость подтверждения такой стабильности следует рассматривать в частном порядке, ориентируясь на химическую структуру анализируемого вещества.